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Abstract

This study makes use of an energy balance to identify damping parameters in mechanical vibration systems. By

balancing the energy input as registered in the force–displacement relationship of the real system against the energy lost

theoretically in a damping model with unknown parameters, the identification algorithms are developed. We apply the

estimation equations to both numerical and experimental systems, modeled with Coulomb plus viscous damping, at

resonance to show the effectiveness and reliability of the new identification method. The equivalent viscous and

dry-friction damping estimates obtained from the experimental system are compared to those obtained from the

forced-resonance method to show their consistencies.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Friction parameter estimation is based on the analysis of measured input and output responses. Our interest
is in identifying parameters of basic friction models by making use of vibration properties. To this end, free
vibration decrements have been exploited for systems with linear stiffness elements and ‘‘small’’ damping.
Here, ‘‘small’’ damping means two things: the free response has sufficiently many extreme excursions that can
be measured with good resolution; and the frequency of damped oscillation is approximately equal to the
undamped natural frequency on. The classic logarithmic decrement scheme for viscous friction identification
goes back to Helmholtz [1] and Rayleigh [2], while the constant decrement [3] can be used for estimation of
Coulomb damping.

Jacobsen and Ayre [4] developed an approximate scheme for estimating both viscous and dry friction
quantities from the free-vibration decrements by noting that the viscous friction dominates in the large-
amplitude responses, and that Coulomb friction dominates in the small-amplitude oscillations. An exact
formulation for the simultaneous estimation of Coulomb and viscous friction in oscillators has since been
derived [5–7].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Free vibration decrements are not applicable if the damping is strong enough to preempt sufficient
oscillations. As such, it makes sense to develop schemes for identifying friction parameters in forced
oscillators. For instance, Stanway et al. [8] proposed identifying Coulomb and viscous damping parameters
with a nonlinear least-squares scheme, which involves the on-line solution of several additional differential
equations. Yao et al. [9] identified the Coulomb and viscous friction parameters by applying a recursive
nonlinear least-squares algorithm. Chen and Tomlinson [10] proposed estimating damping parameters in
nonlinear oscillators by utilizing the acceleration, velocity and displacement output and formulating the
output in terms of series of frequency response functions. Tomlinson and Hibbert [11] applied the power
dissipation to estimate Coulomb and hysteretic damping coefficients. Tomlinson [12] also measured the
distortions in the complex receptance plots to identify damping parameters. Iourtchenko and Dimentberg [13]
used stochastic averaging to identify nonlinear damping in-process when the excitation was random.
Iourtchenko et al. [14], based on Dimentberg [15], applied a harmonic balance analysis to generate
identification equations.

A scheme for extracting Coulomb and viscous friction parameters from forced oscillations based on the
analytical solutions of Den Hartog [16] and Hundal [17] for the nonsticking response to harmonic excitations
was formulated in our previous work [18]. We proposed an approximate forced-identification algorithm
denoted as the analytical forced-resonance method. The analytical forced-resonance method employs an
assumption of small viscous damping of the real system leading to a linear relationship between amplitudes of
harmonic input and output motion. Analytical, numerical and experimental studies have shown the analytical
forced-resonance method to be effective.

The limitations of the analytical forced-resonance method are that it is not applicable for damping which is
not ‘‘small,’’ it relies on analytical solutions of single-degree-of-freedom linear systems, and it does not treat
friction models other than Coulomb plus viscous (see, for example, Refs. [19–24]). The need for analytical
solutions can limit the identification of more complicated systems. Nonetheless, since the analytical forced-
resonance method is based on an analytical solution, it can also serve as a benchmark in the continuing
development of damping identification schemes for more general systems, for which analytical solutions are
not available.

In this paper, we propose an energy balance as an alternative to using analytical solutions for identifying
friction parameters. We apply the energy-balance formulation to systems with co-existing Coulomb and
viscous friction as an example. There are other more advanced friction models that can capture complicated
friction dynamics, such as the work of Soom et al. [25], the state-variable models of Rice [26], Deterich [27],
and Ruina [28], the bristle models of Hassig and Friedland [24] and Canudas de Wit et al. [29], the normal
vibration models of Tolstoi [30], Oden and Martins [21] and Dankowicwz [31], and the contact compliance
models [22–24,32–35].

In developing the energy-balance method, the energy input of a physical system is registered in the
force–displacement relationship. This energy input is balanced against the energy loss of a theoretical model,
consisting of viscous damping and dry friction components. From this balance of energy, the estimation
equations are derived, and applied to numerical and experimental systems in order to examine the reliabilities
of the new identification method.
2. The energy-dissipation identification

The energy-dissipation identification method involves the balance between the energy dissipated
by the friction force against the energy input to the system. This balance results in the ‘‘equivalent
viscous and Coulomb damping’’ parameters, reminiscent to the traditional ‘‘equivalent viscous damping’’
concept seen in undergraduate textbooks, such as [36]. In the traditional approach, an equivalent
viscous model replaces another nonlinear damping model such that there is an energy balance. The
measured response amplitude and the nonlinear damping model are used together with a harmonic
response assumption to compute the equivalent viscous damping coefficient. In this work, we suggest
balancing energy using measured inputs and outputs to identify the coefficients of an assumed nonlinear
damping model.
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Consider a damped-forced oscillator with the following equation of motion:

m €xþ kxþ F ðx; _xÞ ¼ aðtÞ, (1)

where m is the mass, k the stiffness, x the displacement, dots represent derivatives with respect to time, and a(t)
is the excitation. Multiplying (1) by dx and integrating along the motion path C yields the following energy-
balance equation Z

C
m €xþ kxþ F ðx; _xÞ
� �

dx ¼

Z
C

aðtÞdx.

To assist the implementation of integration, the integration variable can be changed to time. Thus,
Z tþT1

t

m €xþ kxþ F ðx; _xÞ
� �

_xdt ¼

Z tþT1

t

aðtÞ _xdt.

Here T1 indicates a finite time interval. We define

W d ¼
R tþT1

t
F ðx; _xÞ _xdt; W a ¼

R tþT1

t
aðtÞ _xdt;

W e ¼
R tþT1

t
m €xþ kxf g _xdt

so that Eq. (1) can be expressed as

W d ¼W a �W e (2)

representing a balance between the dissipated, applied energy, and the sum of the kinetic and elastic energy,
respectively. The terms in Eq. (2) can be quantified if x(t) (and its derivatives) and a(t) are measured. Then, by
integrating and balancing both sides of Eq. (2) while expressing F ðx; _xÞ using an assumed friction model with
unknown parameters, an identification equation for the parameters can be acquired. In order to improve the
estimation accuracy, the excitation level can be varied to obtain more identification equations than the number
of unknown parameters, so that the least-squares criterion can be applied. Details will be given later. While
computing We requires acceleration, m and k, for bounded input and response, we have W e=W d ! 0 and
W e=W a ! 0 as T !1. Thus for long measured time histories, We can be neglected.

On the other hand, when a(t) and x(t) are periodic, one can integrate Eq. (2) over a cycle of periodic motion.
In that case, the contribution of the conservative components of the oscillator, ‘‘m €xþ kx’’, is zero, so that the
following energy-balance equation can be obtained

W d ¼

Z tþT

t

F ðx; _xÞ _xdt ¼

Z tþT

t

aðtÞ _xdt ¼W a, (3)

where T represents the period of the response. Integrating and balancing both sides of Eq. (3), using measured
data and a friction model to express F ðx; _xÞ with unknown parameters, leads to an identification equation for
the parameters. The mass and stiffness parameters need not be known for the estimation of damping
parameters.

This paper focuses on the case for which the input is periodic. We will outline the details in an example.

2.1. Base-excited oscillator with Coulomb and viscous damping

A schematic diagram showing a base-excited oscillator together with damping components is presented in
Fig. 1, in which the Coulomb friction and viscous damping are chosen to represent the damping effects
existing in an industrial linear-bearing system [37]. The model shown in Fig. 1 differs from that of Hundal [17],
with the viscous and Coulomb element between the mass and ground instead of parallel with the spring (i.e.
between the moving base and the mass). The equation of motion of the oscillator can be written as

m €xþ c _xþ kxþ F ksgnð _xÞ ¼ kY cos ot, (4)

where Fksgnð _xÞ represents Coulomb friction for pure sliding with no difference between the static and kinetic
components, c is the viscous damping coefficient, and kY cos ot ¼ aðtÞ represents the harmonic base input.
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Fig. 1. A schematic diagram depicting a single-degree-of-freedom oscillator with viscous, Coulomb friction and base excitation.
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Applying the right-hand side of Eq. (3) we acquire

W a ¼

Z tþT

t

aðtÞ _xdt ¼

Z tþT

t

ky _xdt, (5)

which is the energy supplied per cycle, determined by the measured motion signals y(t) and _xðtÞ and the
stiffness k. In addition, the energy dissipated in the dual-damped oscillator during one forcing cycle is

W d ¼

Z tþT

t

Fk sgnð _xÞ _xdtþ

Z tþT

t

c _x _xdt ¼ aF k þ bc, (6)

where a and b are defined by the time integrals

a ¼
Z tþT

t

sgnð _xÞ _xdt; b ¼
Z tþT

t

_x2 dt. (7)

As such, Eq. (3), W d ¼W a, leads to

aFk þ bc ¼

Z tþT

t

ky _xdt. (8)

Thus, the model of the energy dissipated by the damping forces of the physical system can be balanced
against the energy supplied to the oscillator to produce a linear equation in the assumed damping coefficients.
Multiple test measurements, xiðtÞ and yiðtÞ, i ¼ 1,y,n, will lead to multiple coefficients ai;bi, and W ai, i.e.
multiple versions of Eq. (8), which can be written in matrix form as

W ¼ A p , (9)

where W is a vector of elements W ai, A is a matrix for which each row i has the pair of values ai; bi, and
p ¼ ½Fk; c�

T is the vector of unknown parameters. The least-squares solution is

p ¼ ðATAÞ�1AT W (10)

provides an estimate of the parameters, along with a residual r ¼ A p�W that is generally nonzero. The
residual can serve as an indicator of the quality of the damping model. In this case, it tells whether
‘‘c _xþ F k sgnð _xÞ’’ can closely represent F ðx; _xÞ occurring at the contact interfaces [38]. Since the coefficients are
obtained by integration, high-frequency noise is expected to be filtered, but low frequency noise can have more
influence.

Dividing Eq. (8) by ai, we see that a plot of W ai=ai data versus bi=ai data is expected to be a straight line,
with a slope of c and an intercept of Fk. (The slope and intercept of the affine least-squares fit of the data in
this plot produces a numerically different, and slightly less effective, estimation of the parameters, but allows
for a visualization of the linearity of the data.)
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2.2. Harmonic input and response

In the special case, when the input is harmonic, and the response is nearly so, it may make sense to make a
harmonic approximation to Eq. (8). Substituting kyðtÞ ¼ kY cos ot, xðtÞ ¼ X cosðot� fÞ, and _xðtÞ ¼
�oX sinðot� fÞ into Eqs. (7) and (8), and dividing by X, yields

pkY sin f ¼ 4Fk þ pcoX . (11)

Defining xk ¼ Fk=k, o2
n ¼ k=m, 2zon ¼ c=m, and r ¼ o=on, we can rewrite Eq. (11) as

pY sin f ¼ 4xk þ 2pzXr. (12)

Eq. (11) would be used if the base excitation (or the applied force), ky, were known, while more likely
Eq. (12) would be used if on and y were known. Eq. (12) indicates a linear relationship between the input and
output amplitudes in which the slope and intercept lead to estimates of the viscous damping factor z and the
dry-friction parameter xk.

The estimation strategy is to generate coefficients of Eqs. (11) or (12) for many input–output cases, perform
a least squares fit to a straight line, and obtain the damping parameters from the slope and intercept.

At resonance, r ¼ 1, and if we assume both f1 and f2 are approximately equal to p=2, then

pY ¼ 4xk þ 2pzX (13)

represents a very simple identification equation.
If there are two sets of data, Eq. (13) can be solved to obtain expressions for xk and z. It can be shown that

this estimation for z is the same as that of the analytical forced-resonance method [18], developed from
analytical response expressions at resonance. In this energy-balance formulation, we have made assumptions
of harmonic response with a 901 phase angle for various input levels at the same excitation frequency. In the
forced-resonance method case, we made a ‘‘small z’’ assumption, neglecting z2 effects. The equation for xk in
the two-point harmonic energy-balance estimation at resonance and that obtained by the two-point analytical
forced resonance method (this quantity was denoted as xf in [18]) differ by a factor of xk=xf ¼ Gpz=2, where

G ffi
sinh zp

cosh zp� 1

for small z. Indeed, as z! 0, G! 2=pz. Hence, the xk estimations and the forced-resonance analytical
method converge as z decreases. This comment should be taken cautiously, since the Coulomb-only resonant
response is unbounded [16]. However, it does suggest that the results for xk should be similar between the
analytical scheme and the harmonic energy-balance scheme if z is small.

The major difference between the energy balance and the analytical response methods is that the analytical
response is needed in the latter case, but not for the former case. Thus, the energy balance method can be
applied to more general systems, such as those with nonlinear stiffnesses, or, for example, quadratic damping
laws. The form of Eqs. (8) or (12) depends on the damping model.

3. Numerical examples

We look at numerical examples using both the general integrated energy balance (IEB) and the harmonic
energy balance (HEB) expressions. For comparison with the analytical method [18], we are interested to
examine the applicability on and off resonance, and with slip and stick–slip.

3.1. Slipping motion

The parameters corresponding to Eq. (4) were k ¼ 100:0; m ¼ 1:0; c ¼ 4:0 and F k ¼ 2:0. Hence
z ¼ 0:2 xk ¼ 0:02. We excited the system at resonance, i.e., o1 ¼ on ¼ 10:0, and the excitation levels Y were
0.2, 0.4, 0.8, and 1.0. For the harmonic balance, we used the analytical expression presented in Den Hartog’s
work [16] to obtain the response amplitudes X ¼ 0.43611762, 0.93613738, 1.93614725, and 2.43614923. A
numerical integration was also monitored to cross check if the pure-sliding motion indeed occurred.
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For the HEB at resonance, the input–output amplitudes of four responses were processed to form Eq. (13).
A straight line was fit to the X, Y data, and from the slope and intercept, we obtained the estimates ~zHEB ¼

0:19999708 and ~xkHEB ¼ 0:020069475. The mean of the absolute values of residuals in Eq. (13), normalized by
the values of pY , was 5.10e-6. The source of the error includes the assumption that the motion is a single
harmonic with an amplitude of Den Hartog’s peak response solution and a phase of p/2, as well as the round-
off in the peak response numerals.

To test the IEB method, we used a stiff, low-order ordinary differential equation solver of Bogacki and
Shampine (ode23tb) provided in MATLAB (a commercial software) to numerically integrate Eq. (4) at a
constant sampling rate after converting to first-order form [39]. Simpson’s rule was used to obtain W ai, ai and
bi from an arbitrary cycle of the signals.

The least-squares estimation by Eq. (10) is ~zIEB ¼ 0:200002 and ~xkIEB ¼ 0:0199942. The mean of the
absolute values of the residuals (errors in each of Eq. (9)) normalized by the right-hand side of Eq. (9), was
8.9e-6, for numerically integrated noise-free numerical data with a perfect model. The plot of W ai=ai data
versus bi=ai data was indistinguishable from a straight line.

Although the time-domain output signals are not shown here, they were dominantly sinusoidal. To verify
this, we used the fast Fourier transform to check the power spectrum of the output amplitude response. The
fundamental frequency differed from the harmonics by more than 120 dB.

We also tried the off-resonance case. The accuracy of the IEB method in the off-resonance regime could be
nearly as good as the resonant case, while the accuracy of the HEB method slightly deteriorated in the off-
resonance case. For instance, given the same parameters as those listed at the beginning of this section except
that o1 ¼ 12:0 instead of 10.0, the HEB gave ~zHEB ¼ 0:20851216 and ~xkHEB ¼ 0:01199999. The mean of the
absolute values of residuals in Eq. (12), normalized by the values of pY sin f, was 3.24e-4. In contrast with the
HEB method, the least-squares solution from the IEB approach is ~zIEB ¼ 0:20001583 and ~xkIEB ¼ 0:02008800,
with a mean of normalized residual absolute values of 2.76e-4. The method based on Den Hartog’s analytical
solution is more complicated to formulate off resonance, giving the energy balance added appeal over the
analytical identification method [18].

3.2. Stick– slip motion

To induce sticking, we increased the dry friction force and then integrated Eq. (4) directly with m ¼ 1:0,
Fk ¼ 8:0, c ¼ 4:0, k ¼ 100:0, and o ¼ 10:0. Hence on ¼ 10:0, z ¼ 0:2, and xk ¼ 0:08. The excitation levels Y

were 0.09, 0.10, 0.11, and 0.12, and the response ‘‘amplitudes’’ were 0.002669, 0.011102, 0.025675, and
0.045560.

In implementing the harmonic balance identification Eq. (13), the phase between the excitation and
response is needed, for which there is no clear definition since higher harmonics are significant during
stick–slip motion. Therefore, we excited the system at resonance and assumed the phase angle to be p=2
radians, as the pure viscous case at resonance. A line was fit to the X, Y data, whence the slope and intercept
produced the estimates ~zHEB ¼ 0:3383 and ~xkHEB ¼ 0:0712. The mean of the absolute values of the residuals in
Eq. (13) normalized by pY was 1.90e-2.

The phase issue prompts us to turn to the more general IEB. Because the integration expressions in Eqs. (3),
(5), (6) all involve products of the velocity signal, the integrands become zero when sticking condition occurs.
The least-squares estimation of the IEB method corresponding to the stick–slip data gives ~zIEB ¼ 0:200233 and
~xkIEB ¼ 0:079984. The mean of the absolute values of the normalized residuals was 2.35e-4.
The integrated method is more appropriate in this case since stick–slip responses deviate significantly from

the pure-harmonic approximation. An FFT test indicates that the most distorted case corresponding to four
different excitation levels has the fundamental frequency 20 dB larger than other higher harmonics compared
to the slip case in which a 120 dB difference appears.

4. Experiments

Our experimental system consists of two linear-bearing systems (THK SR20UU) with four linear motion
(LM) blocks, an electromagnetic shaker with a power amplifier (Brüel & Kjær 4809 and 2706), two LVDTs
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with signal conditioners (Rabinson-Halpern Co., Model 210A-0500), an accelerometer with a charge-type
amplifier (Brüel & Kjær 4371 and 2635), and a data-acquisition system (NI-AT-MIO-16E-10 and LabVIEW).
A photograph of the experimental set-up illustrating the linear-bearing system, the electromagnetic shaker, the
base-excited plate, the helical springs, the LVDTs, and the accelerometer, is presented in Fig. 2.

In Fig. 2, the LVDTs were used to sense the displacement signals of the sliding mass and the base excitation,
whereas an accelerometer was adopted to check if the response was close to the pure-sliding motion.
Mechanical parameters of this experimental rig were m ¼ 1.042 kg, k ¼ 1568N/m, on ¼ 6.2Hz. The
resolution of LVDTs after quantization in the data-acquisition process was about 3 mm. The data-acquisition
system consisted of a PC and the LabVIEW software.

Experimentally, the process required to implement the identification scheme included (a) finding the
system’s resonance (b) obtaining steady-state responses for various input levels, Yi (c) measuring input and
output displacements xi and yi, (d) integrating energy coefficients, or extracting displacement amplitudes Xi

and Yi, and (e) seeking the least-squares solution of Eqs. (9) or (13).
Estimates obtained from the energy balance method will be compared to those obtained using the forced-

resonance method [18] and the free-vibration decrement method. Finally, in Ref. [18], the friction force was
measured, and the resulting dry-friction force level (comparable to the sgnð _xÞ coefficient Fk) was about 3.6N,
with evidence of some dynamical friction also involved [18,22].
Fig. 2. A photograph of the experimental set-up illustrating the linear-bearing systems, the electromagnetic shaker, the LVDTs, etc.
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4.1. Slip response at resonance

First we apply the harmonic approximation. The experimental ðY i;X iÞ input and response amplitude data
shown in Fig. 3 were obtained from the experimental linear-bearing system excited approximately at the
resonant frequency [18]. There are totally 100 pairs of input and output amplitudes shown in Fig. 3. Every
small square shown in this figure indicates one pair of input and output amplitudes, and every input or output
amplitude was averaged over more than 10 forcing periods at steady state [18]. Lines connect the points
chronologically as recorded, and thus it seems that the intercept varies slowly, but not the slope (which varies a
bit with amplitude), suggesting a slow variation in the dry-friction coefficient.

Recall (Section 2) that the estimates of the viscous parameters corresponding to data shown in Fig. 3 are
exactly the same for both the HEB and analytical methods at resonance. The estimates of the viscous damping
parameters are listed in Table 1. These estimates are obtained by first applying the least-squares fit of Eq. (13)
to the whole data set, the lower 4/5, 3/5 and 2/5 of the data set. (The reason for doing this is that that X, Y plot
seems to depart from a straight line for large amplitudes, suggesting a large-amplitude departure of the model,
either in the harmonic assumption e.g. due to nonlinear stiffness, or in unmodeled damping effects [18].)
The dry-friction estimates were then calculated according to Eq. (13) using the identified viscous-
damping parameter together with the individual intercept of the linear squares fits. The results are
also shown in Table 1.

Next we apply the IEB. The ai, bi, and W ai were determined by integrating the experimental signals. The
experimental response amplitude actually fluctuated on a small scale. Hence, the integrations were performed
over about twelve forcing periods. The input levels were Y ¼ 4.318, 4.910, 5.376, 5.665, and 6.090mm, in the
range of the lower third of the data for the slip case. The least squares estimation corresponding to the slip
Fig. 3. The experimental input–output amplitudes measured nearly at the system’s resonance.

Table 1

Experimental estimates of damping parameters of the linear-bearing system

Data Both methods ~z Analytical method ~FAM Energy method ~FHEB

Whole data set ~z1 ¼ 0:0987 ~FAM1 ¼ 4:38 ~FHEB1 ¼ 4:38
The 4/5 of the whole data set ~z4=5 ¼ 0:1143 ~FAM4=5 ¼ 4:12 ~FHEB4=5 ¼ 4:13

The 3/5 of the whole data set ~z3=5 ¼ 0:1263 ~FAM3=5 ¼ 3:95 ~FHEB3=5 ¼ 3:96

The 2/5 of the whole data set ~z2=5 ¼ 0:1424 ~FAM2=5 ¼ 3:73 ~FHEB2=5 ¼ 3:75

The free-decrement method ~zFDM ¼ 0:1367 ~FFDM ¼ 3:52
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Fig. 4. Data distribution of slip response experiments for the IEB.
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data gives ~zIEB ¼ 0:103 and ~F kIEB ¼ 4:29N. Both are very close to the slip estimations based on the entire slip
data set, which are slightly low for z and slightly high for Fk compared to the free-vibration decrement method
and the friction measured in Ref. [18]. The mean of the absolute values of normalized residuals was 0.00886.
The data is visually close to the anticipated linear profile (Fig. 4).
4.2. Stick– slip response

We applied the IEB method to a mixed set of stick–slip and pure-sliding response signals. The test
conducted consisted of four excitation levels, Y ¼ 2.570, 2.625, 2.914, and 3.101mm, at an excitation
frequency of o ¼ 5.97Hz, slightly below resonance. Among these excitations, the stick–slip case corresponded
to the lowest excitation level, whereas the pure-sliding cases corresponded to the other higher excitations. The
least-squares estimation corresponding to this mixed set of data gives ~zIEB ¼ 0:0873 and ~FkIEB ¼ 3:23N,
slightly low on both parameters as compared to the slip data and the free-vibration decrement estimation, but
still at the right order for a rough approximation. The mean of the absolute values of normalized residuals of
Eq. (9) was 0.0137.
5. Conclusion

This paper presents an algorithm for identifying damping information in forced vibration systems. The
identification is based on a balance between dissipated energy and energy input. The input energy is obtained
from measurements of the input and output displacement. This applied energy per cycle of response is
balanced against the dissipated energy, formulated from the damping model. Balancing the measured energy
input with the formulated loss leads to parameter identification equations.

The input and output signals are integrated to create numerical coefficients in the identification equations,
which are then solved for the parameters in the least-squares sense. If the response is assumed to be harmonic,
the input energy is a function of input and output amplitudes, frequency and phase, and the identification
equations simplify, omitting the need for integrated coefficients. This, however, is at the cost of accuracy,
which shows in some examples.

The harmonic response approximation works very well for the simulated and experimental linear oscillators
with Coulomb plus viscous friction in sliding motion. For the simulated case this was successful on resonance.
The more general integrated energy method not only worked on the on and off-resonance sliding cases, it also
worked on the numerical and experimental examples with stick–slip responses.
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The advantages of the energy balance approach for damping estimation are that it is founded on a simple
concept, it is easy to apply, it does not require an analytical solution of the system, it does not require
knowledge of the mass and stiffness (except in converting between z and c, and xk and Fk), it does not require
iterations, and it is theoretically applicable to a class of systems with linear and nonlinear stiffness for which
the damping model consists of basis functions and is linear in the coefficients of basis functions. The latter
statement was only supported, in this paper, in an example with linear stiffness and Coulomb plus viscous, for
which the damping basis functions were sgnð _xÞ and _x.

The harmonic energy-balance method described in this paper can be modified slightly to accommodate
other friction and damping models. Work is underway on identifying a compliant-contact friction model.
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